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Abstract. While it has performed well in predicting terrestrial evapotranspiration (ETa) in many gauged locations over the 

world, the calibration-free complementary relationship (CR) depends on a questionable assumption that the Priestley-Taylor 10 

coefficient (αe) is spatially constant over an extensive area. In this work, we evaluated the predictive performance of this 

convenient method, which only requires atmospheric inputs, against in-situ flux observations and water balance estimates 

(ETwb) in Australia. We found that the CR method with a spatially constant αe derived from fractional wet areas did not 

perform as highly as previous studies would suggest, underperforming three advanced ETa models in closing basin-scale 

water balance. This problem was remedied by linking the CR method with a traditional Budyko equation that allowed 15 

upscaling of optimal αe values from gauged basins to ungauged locations. The CR method with the αe upscaled by the 

atmospheric inputs and the mean precipitation (P) better reproduced the grid ETwb available over the entire continent, and 

outperformed the three ETa models. This study suggests that the fixed αe could lead the CR method to biased ETa estimates, 

and it needs to be constrained by climate conditions to better close local water budgets. 

1 Introduction 20 

Evapotranspiration (ETa) links water and energy exchanges between lands and the atmosphere. On the global scale, more 

than 60% of terrestrial precipitation (P) returns to the atmosphere through plants’ vascular systems and soil pores, while 

consuming over 70% of surface net radiation (Trenberth et al., 2009; 2007). Since it is tightly coupled with carbon cycles, 

abnormally low ETa indicates food insecurity and low ecosystem sustainability (Pareek et al., 2020; Kyatengerwa et al., 

2020; Jasechko, 2018; Swann et al., 2016). In severe cases, ETa limited by soil moisture can lead to extreme heatwaves that 25 

further propagate the water deficit in space and time (Schumacher et al., 2022; Miralles et al., 2014; Mueller and 

Seneviratne, 2012). 

Despite great community efforts for sharing in-situ observations (e.g., Baldocchi, 2020; Novick et al., 2018), 

gauging networks for ETa are still unevenly established over the world and often subject to limited data lengths (Ma et al., 

2021). Unavoidably, modeling approaches are needed to predict ETa in ungauged or poorly gauged locations, or to 30 
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characterize it at larger spatial and longer temporal scales. A wide range of modeling frameworks have been proposed such 

as physical models (e.g., Martens et al., 2017; Zhang et al., 2016), machine-learning techniques (e.g., Jung et al., 2019; 

Tramontana et al., 2016), and conceptual land surface schemes (e.g., Guimberteau et al., 2018; Haverd et al., 2018).  

However, most of the ETa models require P data and/or land surface information (e.g., remote-sensing vegetation 

indices) as major inputs. Owing to high uncertainty associated with P data (Sun et al., 2018) and model structure and 35 

parameterization (Zhang et al., 2019; Samaniego et al., 2017), ETa models have produced substantial disparity in their 

estimates. In the comprehensive intercomparison by Pan et al. (2020), for example, the spread of the global mean ETa 

simulated by 14 land surface schemes was larger than 200 mm a-1, and similar incongruity between modeled ETa estimates 

had found in the earlier Global Soil Wetness Project (Schlosser and Gao, 2010). This suggests a necessity of an alternative 

method to circumvent the use of P and synthesized soil moisture. 40 

A practical method to simulate ETa without P and land-surface information is the complementary relationship (CR) 

of evaporation (Bouchet, 1963). It uses the evident fact that the air over a water-limited surface amplifies its vapor pressure 

deficit (VPD), while this effect disappears when the same surface is amply wet (Zhou et al., 2019; Chen and Buchberger, 

2018; Ramírez et al., 2005). This atmospheric self-adjustment could become a predictor of water-limited ETa, and various 

methods have been formulated (e.g., Anayah and Kaluarachchi, 2014; Crago and Qualls, 2013; Huntington et al., 2011; 45 

Kahler and Brutsaert, 2006; Crago and Crowley, 2005; and Hobbins et al., 2004 among others). In particular, the non-

dimensional derivation of Brutsaert (2015) and following modifications (Crago and Qualls, 2021; Szilagyi, 2021; Szilagyi et 

al., 2017; Crago et al., 2016) provided the generality and thermodynamic foundations of Bouchet’s (1963) principle.  

The non-dimensional CRs derived from definitive boundary conditions have showed outstanding performance in 

reproducing ETa observations at local, regional, and global scales (e.g., Ma et al., 2021; Brutsaert et al., 2020; Ma and 50 

Szilagyi, 2019; Ma et al., 2019; Crago and Qualls, 2018; Brutsaert et al., 2017), and their applications have extended to 

drought risk assessments (e.g., Kim et al., 2021; Kyatengerwa et al., 2020; Kim et al., 2019). However, to date, the only 

formulation that purely requires meteorological data and thus usable in ungauged areas is the one by Szilagyi et al. (2017). 

The other kindred methods depend on any reference ETa data (e.g., eddy-covariance flux data or water-balance estimates) to 

calibrate associated parameters that determine the hypothetical wet-environment evapotranspiration (ETw). To resolve this 55 

problem, Szilagyi et al. (2017) analytically estimated the Priestley-Taylor coefficients (αe) in wet locations only using 

atmospheric observations, and transferred their average value to the entire area of interest. This convenient calibration-free 

approach had well closed basin-scale water balance in the conterminous U.S. (Ma and Szilagyi, 2019), China (Ma et al., 

2019), and 52 major river basins over the world (Ma et al., 2021). 

Nonetheless, it seems to be an oversimplification to assume that αe is constant over a large continental area. On 60 

many open-water surfaces, αe has varied substantially on sub-daily, daily, monthly, and annual timescales (Han et al., 2021; 

Assouline et al., 2016; Baldocchi et al., 2016; Wang et al., 2014; Parlange and Katul, 1992). Given the space-time links 

between climate, soil, and vegetation (Hagedorn et al., 2019; Mekonnen et al., 2019; Rodriguez-Iturbe, 2000), the 

aerodynamic component of ETw may not be described simply by a fixed fraction of the surface net radiation. The constant αe 
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assumption might be unable to close surface energy balance under diverse climate and surface conditions, because the 65 

aerodynamic resistance plays a pivotal role in modulating surface temperature (Chen et al., 2020). 

In this work, we proposed how to mend the problematic assumption of constant αe in the Australian continent, 

where performance of the calibration-free CR has not yet thoroughly evaluated. By linking the CR and a traditional Budyko 

framework, here we analytically addressed why αe cannot be fully independent of local climate conditions, and how it can be 

upscaled from gauged to ungauged locations while being constrained by local climate conditions.  70 

2 Methodology and data  

2.1 Calibration-free CR formulation by Szilagyi et al. (2017)   

The CR of Szilagyi et al. (2017) describes the self-adjustment of ETp to surface moisture conditions using three evaporation 

rates, namely, ETa, ETw, and the atmospheric evaporative potential (ETp). Again, ETa is the actual moisture flux from a land 

surface to the atmosphere, and ETw is the hypothetical ETa rate that should occur with ample water availability. ETp is the 75 

atmospheric capacity to receive water vapor that responds actively to soil moisture conditions. By defining the two 

dimensionless variables as x ≡ ETw/ETp and y ≡ ETa/ETp, and a definitive relationship between x and y could be derived 

from four boundary conditions.  

Under ample water conditions, ETp does not deviate from ETw and ETa (i.e., ETp = ETw = ETa); hence, the 

corresponding zero-order boundary condition is (i) y = 1 for x = 1. In contrast, ETa must be nil over a desiccated surface (i.e., 80 

y = 0), and by energy balance, the surface net radiation should be fully transformed to the sensible heat flux. Then, the 

atmospheric VPD would be amplified at the maximum level under the given radiative forcing. Defining the maximum ETp 

rate as Epmax, another zero-order boundary condition is given as (ii) y = 0 for x = xmin ≡ ETw/Epmax. When x = 1 (i.e., ample 

water conditions), changes in ETa would be controlled by changes in ETw, yielding a first-order boundary condition as: (iii) 

dy/dx = 1 for x = 1. Over a desiccated surface, the zero ETa cannot change irrespective of changes in ETw and ETp; thus, 85 

another first-order boundary condition becomes (iv) dy/dx = 0 for x = 0. The simplest polynomial equation satisfying the 

four boundary conditions is: 

y = 2X2 − X3,            (1a) 

where, X rescales the dimensionless x into [0, 1] as: 

X =
x−xmin

1−xmin
=

Epmax−ETp

Epmax−ETw

ETw

ETp
.          (1b) 90 

Eq. (1) allows users to estimate ETa with no land-surface information, because ETp, ETw, and Epmax are all 

obtainable from a set of net radiation, air temperature, dew-point temperature, and wind speed data. ETp and Epmax could be 

estimated by the Penman (1948) equation: 

ETp =
∆(Ta)

∆(Ta)+𝛾

Rn

λv
+

𝛾

∆(Ta)+𝛾
fuVPD,          (2) 
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Epmax =
∆(Tdry)

∆(Tdry)+γ

Rn

λv
+

γ

∆(Tdry)+γ
fues(Tdry),        (3)  95 

where, Δ(T) is the slope of the saturation vapor pressure curve (kPa °C-1) at a temperature T, Ta is the mean air temperature 

(°C),  γ is the psychometric constant (kPa °C-1), Rn is the surface net radiation less the soil heat flux (MJ m-2 d-1), λv is the 

latent heat of vaporization (MJ kg-1), fu = 2.6 (1 + 0.54 u2) is the Rome wind function (mm d-1 kPa-1), where u2 is the 2-m 

wind speed (m s-1), and VPD is es(Ta) minus es(Tdew), where es(T) is the saturation vapor pressure at T and Tdew is the dew 

point temperature (°C). 100 

Tdry in Eq. (3) is the air temperature (°C) at which the boundary layer is devoid of humidity by the adiabatic drying 

process: 

Tdry = Twb +
es(Twb)

γ
= Ta +

es(Tdew)

γ
 ,         (4) 

where, Twb is the wet-bulb temperature (°C), where the saturation vapor pressure curve intersects with the adiabatic wetting 

line: 105 

γ
Twb−Tavg

es(Twb)−ea
= −1.           (5) 

To quantify ETw, the Priestly and Taylor (1972) equation has been a typical choice (e.g., Han and Tian, 2018; 

Szilagyi et al., 2017; Crago et al., 2016; Brutsaert, 2015): 

ETw = αe
∆(Tw)

∆(Tw)+𝛾

Rn

λv
,           (6) 

where, αe varies usually within [1.10, 1.32] (Szilagyi et al., 2017), and Tw is the wet-environment air temperature (°C). Tw 110 

can be approximated with the wet-surface temperature (Tws), because negligible vertical air temperature gradient is 

observable in wet environments. Given the independence of Tws on areal extent (Szilagyi and Schepers, 2014), it is 

obtainable by iteration from the Bowen ratio (β) of a small wet patch: 

β =
Rn−ETp

ETp
≈ 𝛾

Tws−Ta

es(Tws)−es(Tdew)
.          (7) 

The approximate Eq. (7) assumes that the available radiation for the wet patch is close to that of the drying surface (Szilagyi 115 

et al., 2017). Tws might be higher than Ta when the air close to saturation. In such a case, Tws needs to be constrained by Ta 

when estimating ETw. 

 The single parameter for the non-dimensional CR, i.e., ⍺e, could be analytically obtained by inserting the Priestley-

Taylor equation into the Bowen ratio of a wet environment (Szilagyi et al., 2017): 

αe =
[∆(Ta)+𝛾][es(Tws)−es(Tdew)]

∆(Ta){[es(Tws)−es(Tdew)]+𝛾[Tws−Ta]}
,         (8) 120 

where, ⍺e must be fall within the theoretical limit of [1, 1+𝛾/𝛥(Ta)] (Priestley and Taylor, 1972). 

2.2 Data used for ETa estimation and performance evaluation 

Since Eq. (8) is applicable only in a wet environment, Szilagyi et al. (2017) identified wet locations in a continental area 

using the fact that the air close to saturation is likely to have high relative humidity (RH) and Tws higher than Ta. Thus, ⍺e 
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values were calculated at locations with RH > 90% and Tws > Ta + 2 °C, and their average was assumed to be an unbiased ⍺e 125 

for every location of interest. 

However, the spatially constant ⍺e may not be suitable in a continental area, because the dynamic equilibrium between the 

atmosphere and the underlying surface is intertwined with partitioning of P into ETa and runoff (Q). Kim and Chun (2021) 

analytically linked Eq. (1) with the Turc-Mezentsev equation, and explained the variation of x with climatological aridity 

and an implicit land-surface parameter. To satisfy the underpinning independence between P and Rn, they reformulated the 130 

traditional Budyko equation with Φ0 ≡ ETw/P in lieu of the commonly used aridity index (i.e., Φ ≡ ETp/P) as: 

ETa

P
=

ETw

P
[

1

1+(
ETw

P
)

n]

1

n

=
xETp

P
[

1

1+(
xETp

P
)

n]

1

n

,        (9) 

where, n is the land-surface parameter that accounts for factors other than climatic controls affecting the partitioning of P. By 

dividing Eq. (9) with Φ, it is found that the P partitioning is intertwined with the dimensionless CR as:  

y =
ETa

ETp
= 2X2 − X3 = [

xn

1+xnΦn]

1

n
.         (10) 135 

Eq. (10) implicates that the CR needs to be constrained by climatological aridity and surface properties.  

When ETa and P data are available at a sufficient number of river basins, Eq. (10) enables users to estimate x and n. 

Considering xmin = xETp/Epmax, the non-linear Eq. (10) could be simplified by x values from Eq. (10) and corresponding Φ, 

ETp/Epmax, and n as: 

 x̂ = b0 + b1 ln(Φ) + b2 ln(ETp/Epmax) + b2 ln(n),       (11) 140 

where, x̂ is the climatologically unbiased ratio of ETw to ETp, and b0, b1, and b2 are the intercept and the regression 

coefficients, respectively. For ungauged locations where n is unavailable, Eq. (11) could be further approximated only using 

the climatic variables: 

x̂ = c0 + c1 ln(Φ) + c2 ln(ETp/Epmax),        (12) 

where, c0, c1, and c2 are the intercept and the regression coefficients of the approximated equation. Using x̂ from Eq. (12), 145 

one could estimate ⍺e in an ungauged location as: 

α̂e = x̂
ETp

ETeq
            (13a) 

ETeq =
∆(Tw)

∆(Tw)+𝛾

Rn

λv
           (13b) 

where, the estimated α̂e  approximately satisfies the CR and the Budyko equation together, and ETeq is the equilibrium 

evapotranspiration (mm d-1). Note that P, ETp, Epmax, and ETeq within Eqs. (9)-(13) must be on a timescale where the Turc-150 

Mezentsev equation is valid (typically longer than a year), and α̂e  should be bounded with the theoretical limits of [1, 

1+𝛾/𝛥(Ta)]. 
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2.3 Atmospheric forcing, eddy-covariance, and runoff datasets for application 

We examined the CR combined with the Budyko framework in Australia lying within [10°- 45° S, 113°- 155° E]. The 

atmospheric forcing data (Rn, Ta, Tdew, and u2) were collected from the advanced ERA5-Land reanalysis archive (Muñoz-155 

Sabater et al., 2021) of the European Centre for Medium-Range Weather Forecasts (https://cds.climate.copernicus.eu; last 

access on Dec-10/2021). The monthly averages of surface latent and sensible heat fluxes, 2-m air temperature, 2-m dew-

point temperature, and 10-m U and V wind speed components at 0.1°×0.1° were downloaded for 1981-2020. Rn was 

calculated by summing the two heat fluxes, and the 10-m wind speed components were converted to u2 using the logarithmic 

vertical profile (Allen et al., 1998). 160 

As a point-scale evaluation reference, monthly latent heat flux observations at the 16 eddy-covariance stations in 

Table 1 were taken from the FLUXNET2015 archive (https://fluxnet.org/; last access on Jul-1/2021). We chose the flux 

towers at which 24 or more monthly data with high quality (‘LE_F_MDS_QC’ > 0.95), and employed the latent heat flux 

data multiplied by the energy balance closure correction factor. Considering the fine resolution of the ERA5-Land forcing 

data, we believed that the resulting CR ETa estimates could be compared directly with the point-scale observations. 165 

As a basin-scale evaluation reference, we also collected the Australian edition of the Catchment Attributes and Meteorology 

for Large sample Studies (CAMELS; Fowler et al., 2021) series of datasets (available at 

https://doi.org/10.1594/PANGAEA.921850; last access on Sep-27/2021). The CAMELS datasets comprise daily time series 

of 19 hydrometeorological variables at 222 unregulated river basins in Australia. We took P and runoff (Q) data for 1981-

2014 in 71 river basins larger than 500 km2 that could contain at least five CR ETa estimates at 0.1°×0.1°. The basin-scale 170 

water balance was approximated by ETwb ≈ 𝛴P - 𝛴Q, where ETwb is water-balance ETa at the mean annual scale. 

In addition, the SILO P data at 0.01°×0.01° were collected from the Queensland government 

(https://www.longpaddock.qld.gov.au/silo/gridded-data; last access on Jun-01/2021) together with the Global RUNoff 

(GRUN) ENSEMBLE data (Ghiggi et al., 2021) (https://doi.org/10.6084/m9.figshare.12794075; last access on Oct-1/2021). 

The global Q data were produced at 0.5°×0.5° using a machine-learning algorithm trained by in-situ streamflow 175 

observations, and potential errors were reduced by simulations with 21 different sets of atmospheric forcing (Ghiggi et al., 

2021). After bilinearly unifying the resolutions of SILO P and GRUN Q datasets, we calculated the mean annual ETwb for 

1981-2016 at 0.5°×0.5° over the entire Australian continent. 

Against the grid-scale ETwb estimates, predictive performance of the CR method was compared with three ETa 

products from a physical, a machine-learning, and a land-surface models. The physical model was the Global Land 180 

Evaporation Amsterdam Model (GLEAM) v3.2 (Martens et al., 2017; https://www.gleam.eu; last access on Jun-03/2020) 

based on the Priestley-Taylor equation constrained by microwave-derived soil moisture, surface temperature, and vegetation 

optical depth. The machine-learning ETa product was the FluxCom (http://www.fluxcom.org/; last access Mar-18/2019) that 

upscaled in-situ observations at 224 eddy-covariance towers using 11 algorithms (Jung et al., 2019). Among the variations of 

the FluxCom products, we chose the one forced by the CRUNCEPv8 that has the longest data length from 1950 to 2016. The 185 

https://doi.org/10.5194/hess-2022-164
Preprint. Discussion started: 24 May 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

land-surface-model-based product was the ERA5-Land monthly ETa (https://cds.climate.copernicus.eu; last access on Jul-

7/2021) simulated by the advanced Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land scheme (Balsamo 

et al., 2015). We bilinearly unified the different resolutions of the modeled ETa products to 0.5°×0.5°, and their common 

period of the modeled ETa products was 1981-2016. 

3 Results  190 

3.1 Performance of the calibration-free CR in Australia 

Figure 1a depicts the spatial distribution of the inverse of aridity index (Φ-1 = P/ETp) that has been traditionally used for 

climate classification. The mean ratio between SILO P and ETp for 1981-2014 shows that 81% of the Australian land 

surfaces were under arid (Φ-1 < 0.2) and semi-arid climates (0.2 < Φ-1 < 0.5). Semi-humid (0.5 < Φ-1 < 0.65) and humid 

climates (Φ-1 > 0.65) were only found in the northern and southeastern coastal areas and the southwestern edge where major 195 

cities and agricultural lands have developed. The blue-colored areas in Figure 1a are the locations with RH > 90% and Tws > 

Ta + 2˚C, at which the ⍺e values from Eq. (8) were within 1.15 ± 0.064 (median ± interquartile range). Though the two 

conditions were satisfied in some mountainous areas in the southeastern part, we excluded them because unexpectedly high 

⍺e values were obtained. The median ⍺e = 1.15 fell within the theoretically acceptable range, and was close to the values 

found by Ma et al. (2019) and Ma and Szilagyi (2019). 200 

Using ⍺e = 1.15, we synthesized CR ETa over the entire Australian continent (Figure 1b). The distribution of the 

mean CR ETa for 1981-2014 was coherent with that of Φ-1. The mean CR ETa ranged in 248 ± 99.7 mm a-1 and 547 ± 252 

mm a-1 under arid (0.05 < Φ-1 < 0.25) and semi-arid (0.25 < Φ-1 < 0.50) climates, respectively. In contrast, CR ETa in semi-

humid (0.5 < Φ-1 < 0.65) and humid (Φ-1 > 0.65) locations were much higher, being within 913 ± 293 mm a-1 and 960 ± 333 

mm a-1, respectively. Hyper-arid climates (Φ-1 < 0.05) were not found in Australia. The continental mean CR ETa was 486.8 205 

mm a-1 for 1981-2012, was about 10% higher than the estimate (439 mm a-1) in Zhang et al.’s (2016) global-scale synthesis. 

The continental average of SILO P for 1981-2014 (473.2 mm a-1) was slightly smaller than the mean CR ETa, implicating 

that the calibration-free CR is likely to overrate ETa. 

The overestimation of the CR method was confirmed by comparing the ETa estimates with the flux observations 

and the basin-scale ETwb (Figure 2). The percent bias (p-bias) of the ETa estimates were positive to the two observation sets. 210 

The regression slopes between estimated and observed ETa were below 0.75, tending to overate ETa increasingly as climate 

becomes wetter. Despite the high Pearson correlation coefficient (Pearson r), the Nash-Sutcliffe efficiency (NSE) and the 

root mean square error (RMSE) between CR ETa and ETwb in the CAMELS basins indicated that the calibration-free CR did 

not perform as highly as in prior studies (Ma et al., 2021, Ma and Szilagyi, 2019; Ma et al., 2019: Kim et al., 2019). 
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One may argue that the median ⍺e = 1.15 from the small fractional areas is unlikely representative of the entire 215 

Australian continent. Thus, we re-simulated ETa using the global estimate of ⍺e = 1.10 recently found by Ma et al. (2021). 

Though the performance measures were improved, the overestimating tendency did not disappear (Figure 3). 

3.2 The empirical relationship between �̂� to climatic variables  

Figures 2 and 3 imply that the calibration-free CR with a fixed ⍺e was unlikely good at closing local water balance 

particularly in (semi-)humid river basins. To find climatologically unbiased ⍺e, we first estimated the climatological x and 220 

the parameter n of the CAMLES basins using Eq. (10) using the averages of ETwb, P, ETp, and Epmax over 1981-2014. Figure 

4a-c shows the scatter plots between the resultant x and corresponding Φ, ETp/Epmax, and n values. The The Pearson r 

between the x and the other three variables was -0.83, -0.49, and 0.44, respectively (significant at 1% level), suggesting that 

the self-adjustment of ETp is affected not only by climate conditions, but by land surface properties at least in part. 

By regressing the x values with log-transformed Φ, ETp/Epmax and n, we obtained an empirical relationship that 225 

enables to estimate the climatological ratio of ETw to ETp as: 

x̂ = 0.964 − 0.206 ln(Φ) + 0.261 ln(ETp/Epmax) + 0.0750 ln(n).     (14) 

The regression coefficients were all significant at 1% level, and the coefficient of determination (R2) was 0.98. The 

regression equation was further approximated by discarding n from the explanatory variables: 

x̂ = 1.047 − 0.221 ln(Φ) + 0.251 ln(ETp/Epmax).       (15) 230 

The R2 of the approximated Eq. (15) declined to 0.88. We also found that the simple regression between x and Φ provided 

the R2 of 0.84. In other words, though the spatial variation of x could be explained mostly by changes in climatological 

aridity, heterogeneous land properties might exert non-negligible influences. About 10% of predictability was lost by 

neglecting the implicit effect of land properties on changes in x̂.  

Despite the decreased R2, the approximated Eq. (15) performed acceptably in reproducing the x values directly from 235 

CR (Figure 4d). The NSE, RMSE, Pearson r, and p-bias between the predicted x̂ and the x from CR were 0.88, 0.03, 0.94, 

and 0.0%, respectively. 

3.3 Evaluation of annual ETa and decadal trends against grid-scale water balance 

By multiplying x̂ to the climatological ratio between ETp and ETeq, we determined α̂e across the Australian land surfaces. 

Figure 5a illustrates the distribution of the resulting α̂e that varies within 1.08 ± 0.19. The median ⍺e (1.08) was smaller than 240 

the Ma et al.’s (2021) global-scale estimate (1.10). The α̂e values were relatively high in the northwestern and the northern 

part, whereas they were mostly below the median in the southern and the eastern parts. On 24% of the Australian land 

surfaces, α̂e values were unity, implying that they might be below the theoretical lower limit unless bounded. 

We re-simulated CR ETa using the spatially varying α̂e, and found that the overestimating tendency was reduced 

considerably (Figure 5b). Under arid and semi-arid climates, the mean CR ETa ranged within 231 ± 86.2 mm a-1 and 507 ± 245 
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247 mm a-1 for 1981-2014, while it decreased to 797 ± 406 mm a-1 and 806 ± 410 mm a-1 in semi-humid and humid regions, 

respectively. The continental mean ETa for 1981-2012 declined to 441 mm a-1, being practically equal to Zhang et al.’s 

(2016) estimate, and providing a physically plausible evaporative fraction (93% of P). As expected, the water-balance ETwb 

in the CAMELS basins were better reproduced by employing the varying α̂e  values, while keeping the point-scale 

reproducibility at flux tower locations (Figure 6). 250 

Since the empirical Eq. (15) was built by ETwb of the CAMELS basins, one may argue that the evaluation against 

the same reference would be unfair. Hence, after resampling to 0.5°×0.5°, we compared the CR ETa estimates against the 

grid ETwb over the entire Australian continent together with the modeled ETa by GLEAM, FluxCom, and ERA5-Land. As 

shown, the CR method with ⍺e = 1.15 overrated the mean annual ETa for 1981-2016 along the eastern and the northern 

coastlines (Figure 7b), underperforming the physical, the machine-learning, and the land surface models (Figure 8a). 255 

Although the smaller constant ⍺e = 1.10 made the CR method perform better, its predictability was still poorer than the three 

models and the variation of residuals seemed to be as large as in the simulations with ⍺e = 1.15 (Figure 8b). 

When employing the spatially varying α̂e , on the other hand, the same CR formulation could alleviate 

overestimations along the coastlines (Figure 7c). The varying α̂e resulted in the CR ETa estimates agreeing more neatly with 

the grid ETwb, and the variation of residuals was much smaller than in the case of ⍺e = 1.10 (Figure 8c). The CR method with 260 

variable α̂e outperformed the advanced models in reproducing the grid ETwb (Figure 8). Although the referenced ETwb may 

have some errors associated with upscaling of P and Q observations to the grid scale, our comparative evaluation suggests 

that discarding the assumption of a fixed ⍺e could reduce the variation of errors considerably. 

4 Discussion 

4.1 Determination of ⍺e and the Budyko framework 265 

In seven Australian eddy-covariance flux towers, Crago et al. (2022) found that the optimal ⍺e for the CR of Szilagyi et al. 

(2017) was 1.35 when predicting daily ETa in the dimensionless form (i.e., y = ETa/ETp). However, it should be increased to 

1.42, 1.45, 1.47, and 1.50 to simulate dimensional latent heat fluxes at daily, weekly, monthly, and annual timescales, 

respectively. In Crago and Qualls (2018), the optimal ⍺e for the kindred linear CR of Crago et al. (2016) varied between 1.00 

and 1.43. The prior point-scale experiments have already suggested that a constant ⍺e is unlikely suitable for the non-270 

dimensional CRs to predict ETa in Australia. 

Evidently, the ratio between the aerodynamic and the radiation components of the Penman equation is affected by 

the entrainment from the top of the boundary layer (Baldocchi et al., 2016), the dissimilarity between heat and water vapor 

sources (Assouline et al., 2016), the large-scale synoptic changes (Guo et al., 2015), the horizontal advection of dry air mass 

(Jury and Tanner, 1975) and among others. More recently, Han et al. (2021) proved the non-linear dependence of ETw on 275 

ETeq using the sigmoid CR of Han and Tian (2018). Yang and Roderick (2019) empirically found that ⍺e varies with Rn even 
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over ocean surfaces. The theoretical and empirical evidence is counterintuitive to the constant ⍺e assumption underpinning 

the calibration-free CR. 

Although Ma et al. (2021) highlighted the global applicability of the calibration-free CR, its performance was 

remained unknown in most of the Australian land surfaces and in many ungauged basins over the world. Given the spatially 280 

diverse climate conditions, assuming a single ⍺e value across the continental area is questionable. Here, we analytically 

addressed that the dimensionless CR relates to the Budyko framework describing the long-term water balance simply with 

the climatological aridity. The Turc-Mezentsev equation enables users to develop an empirical relationship between climate 

(i.e., Φ and ETp/Epmax) and the degree of ETp adjustment (i.e., x̂), making the CR method better close local water budgets. 

The comparative evaluation highlights that the ⍺e values constrained by diverse climate conditions is likely to make the CR 285 

method outperform the advanced physical, machine-learning, and land surface models. Thus, neglecting local P data may not 

be a good choice when predicting ETa with the CR method in ungauged areas. It is noteworthy that Φ was the dominant 

control of the x̂ variation. 

While here we addressed the problematic assumption of spatially constant ⍺e, more questions could be raised when 

employing the polynomial or a kindred CR. For example, the ⍺e values obtained from the Rome wind function would 290 

inherently rely upon an unrealistic assumption that the aerodynamic resistance on a vegetated surface is equivalent to that of 

open-water surfaces. However, it is unknown if this assumption is practically valid, because the Penman equation formulated 

with the Rome wind function may result in unrealistically high ETp even over large wet areas (McMahon et al., 2013). Given 

the importance of the aerodynamic resistance in modulating surface temperature (Chen et al., 2020), ignoring its temporal 

variability may become a considerable error source may affect the performance of the CR method sub-annual timescales. 295 

Since the steady-state Budyko equation is unlikely to resolve this problem, further improvements are necessary for the CR 

formulations. 

4.2 Limitations 

We employed the meteorological data different from those used in Ma et al. (2021). The ERA5-Land data are more advanced 

and produced at a higher resolution than the ERA5 data (Hersbach et al., 2020) by which Ma et al. (2021) predicted ETa 300 

globally. Ma et al. (2021) incorporated remotely sensed albedo and emissivity together with a correction factor when 

calculating Rn, whereas we directly employed the sum of the ERA5-Land latent and sensible heat fluxes. Those input 

differences, too, may lead to discrepancy in CR ETa estimates.  

The gridded GRUN Q dataset also has some uncertainty sources, though it is the ensemble of many runoff 

simulations from 21 different atmospheric forcing inputs. In the associated machine-leaning process, some Q observations 305 

affected by human activities (e.g., dam regulation and return flows from groundwater abstraction) might not be excluded, 

potentially disrupting the empirical relationship between atmospheric forcing and natural flows (Ghiggi et al., 2021). In 

addition, the uncertainty of SILO P might be non-negligible in areas with limited weather stations and in mountainous areas 
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(Fu et al., 2022). Though we reduced the potential errors in the gridded P and Q datasets by temporal averaging, the grid-

scale ETwb estimates should be treated as plausible values rather than exact observations. 310 

5 Conclusions 

In this work, we showed the calibration-free CR is unlikely to perform well in Australia due at least to the assumption of a 

constant Priestley-Taylor coefficient. We resolved this problem by linking the CR with the traditional Turc-Mezentsev 

equation, and drew the following conclusions: 

(1) The constant Priestley-Taylor coefficient transferred from fractional wet locations could lead the CR method to 315 

poor performance in closing basin-scale water balance. The CR with a constant Priestley-Taylor coefficient 

seemed to underperform the widely used physical, machine-learning, and land surface models. 

(2) The Budyko framework could provide an additional condition that constrains the degree of ETp adjustment at 

the mean annual scale, upscaling the optimal Priestley-Taylor coefficients from gauged to ungauged locations. 

(3) The Priestley-Taylor coefficients constrained by diverse climate conditions showed outstanding performance in 320 

closing the local water balance over the Australian continent, and the CR method outperformed the other 

advanced ETa models. 
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Table 1. List of the chosen FLUXNET sites 

Site ID Lon. (°E) Lat. (°S) Data period Site ID Lon. (°E) Lat. (°S) Data period 

AU-ASM 133.25 22.28 2010-2014 AU-How 131.15 12.49 2001-2014 

AU-Cpr 140.59 34.00 2010-2014 AU-Rig 145.58 36.65 2011-2014 

AU-DaP 131.32 14.06 2007-2013 AU-Stp 133.35 17.15 2008-2014 

AU-DaS 131.39 14.16 2008-2014 AU-TTE 133.64 22.29 2012-2014 

AU-Dry 132.37 15.26 2008-2014 AU-Tum 148.15 35.66 2001-2014 

AU-Emr 148.47 23.86 2011-2013 AU-Wac 145.19 37.43 2005-2008 

AU-Fog 131.31 12.55 2006-2008 AU-Whr 145.03 36.67 2011-2014 

AU-Gin 115.71 31.38 2011-2014 AU-Wom 144.09 37.42 2010-2014 
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 520 

 

Figure 1: The spatial distributions of (a) wetness index and (b) mean annual ETa for 1981-2014 predicted by the calibration-free 

CR. The red circles and the gray polygons are the chosen flux towers and the CAMELS river basins. The blue-colored areas in (a) 

indicate the wet cells identified by RH > 90% and Tws > Ta + 2 °C. CR ETa was simulated at grid cells where the land fraction was 

larger than 50%.  525 
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Figure 2: The 1:1 comparison between the calibration-free CR ETa estimates against (a) the monthly FLUXNET2015 observations 

and (b) the mean annual ETwb at 71 CAMELS for 1981-2014 predicted by the calibration-free CR. 
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 530 

Figure 3: As in Figure 2, but with ⍺e = 1.10. 
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Figure 4: The scatter plots between the x from the CR with ETwb and corresponding (a) Φ, (b) ETp/Epmax, and (c) n values, and (d) 

the 1:1 plot between the x and the predicted �̂� by Eq. (15). The red x symbols are the outliers excluded from the correlation and 535 
the regression analyses. 
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Figure 5: The distributions of (a) �̂�𝐞values upscaled by the Budyko framework, and (b) the mean annual ETa predicted by the CR 

method with �̂�𝐞.  540 
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Figure 6: As in Figure 2, but with �̂�𝐞 varying across the land surfaces. 
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Figure 7: The distributions of (a) the mean annual water-balance ETwb for 1981-2016 and the predictions by (b) CR with ⍺e = 1.10, 

(c) CR with �̂�𝐞, (d) GLEAM, (e) FluxCom, and (f) ERA5-Land. 
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 550 

Figure 8: Scatter plots between the mean annual ETwb for 1981-2016 at 0.5˚×0.5˚ and the predictions by (a) CR with ⍺e = 1.15, (b) 

CR with ⍺e = 1.10, (c) CR with �̂�𝐞, (d) GLEAM, (e) FluxCom, and (f) ERA5-Land. 
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